首页 | 本学科首页   官方微博 | 高级检索  
     检索      


CaAl ratio and composition of the Earth's upper mantle
Authors:H Palme  KG Nickel
Institution:Max-Planck-Institut für Chemie, Saarstrasse 23, D-6500 Mainz, F.R. Germany
Abstract:Undifferentiated meteorites (chondrites) have the same relative abundances of refractory lithophile elements (Ca, Al, Ti, Sc, REE, etc.), despite variable absolute concentrations. The reasonable assumption of chondritic ratios among refractory elements in the bulk Earth is used to constrain the chemical composition of the upper mantle in the following way: Correlations of the compatible refractory elements Ca, Al, Ti, Sc and Yb with MgO are worldwide very similar in suites of spinel-lherzolite xenoliths from basaltic rocks. Such suites represent upper mantle material depleted to differing degrees by extraction of partial melts. From these refractory elements vs. MgO correlations, ratios of pairs of refractory elements were calculated at various MgO contents. Chondritic AlTi and ScTi ratios were only obtained for MgO contents below 36%. A chrondritic ScYb ratio requires an MgO content above 35%. We therefore accept 35.5% as the most reasonable MgO content of undepleted upper mantle. This MgO content is slightly below the spinel-lherzolite with the lowest measured MgO content (36.22%). The corresponding Al2O3 content of 4.75% is higher than in previous estimates of upper mantle composition. The concentrations of other elements were obtained from similar correlations at a MgO content of 35.5%. The resulting present upper mantle composition is enriched in refractory elements by a factor of 1.49 relative to Si and Cl and by a factor of 1.12 for Mg relative to Si and Cl. These enrichments are in the same range as those for the Vigarano type carbonaceous chondrites. The Mg/Mg + Fe ratio of 89 is slightly lower than previous estimates.The CaAl ratio in spinel lherzolite suites is, however, uniformly higher worldwide than the chondritic ratio by about 15%. Orogenic peridotites as well as komatiites appear to have similar non-chondritic CaAl ratios. It is therefore suggested that this non-chondritic CaAl ratio is a characteristic of the upper mantle, possibly since the Archean. A minor fractionation of about 4% of garnet in an early, global melting event (deep magma ocean?) is presented as the most likely cause for the high CaAl-ratio. In this case the addition of 4% of such a garnet component to the undepleted present upper mantle would be required to obtain the composition of the primordial upper mantle. The CaAl-ratio of this primordial mantle would be 15% higher than that of the undepleted present upper mantle, resulting in an enrichment of refractory elements of 1.70 (AlSi relative to Cl) for the primordial upper mantle.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号