首页 | 本学科首页   官方微博 | 高级检索  
     


The regulation of hydrogen and oxygen escape from Mars
Authors:S.C. Liu  T.M. Donahue
Affiliation:Space Physics Research Laboratory, Department of Atmospheric and Oceanic Science, University of Michigan, Ann Arbor, Michigan 48105, USA
Abstract:It is shown that under present conditions the Jeans escape flux of hydrogen from Mars in the form of H and H2 is constrained to be the same as twice the non-thermal (McElroy, 1972) escape of O atoms. The mediation of the chemical chain that recombines CO2 plays an essential role in regulating the escape of hydrogen to match that of oxygen, confirming a mechanism postulated by McElroy and Donahue (1972). It is also shown that if the oxygen flux changes, a change in the O2 mixing ratio results and the consequence is to induce a large change in the odd hydrogen concentration, and consequently in H2 production and hydrogen escape. The effect is to stabilize the hydrogen escape flux at twice the O flux. It is shown that surface chemistry should not change the operation of this mechanism but has consequences for the eddy coefficient variation at low altitudes. There is a strong correlation between low humidity, large solar zenith angles and large O3 abundances. The effect of argon in a mixing ratio as large as 0.3 on these results is also investigated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号