首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Source regions of granites and their links to tectonic environment: examples from the western United States
Authors:Elizabeth Y Anthony  
Institution:

Department of Geological Sciences, The University of Texas at El Paso, El Paso, TX 7968-0555, USA

Abstract:This review, in honor of Ilmari Haapala's retirement, reflects on lessons learned from studies of three granitic systems in western North America: (1) Mesoproterozoic samples from west Texas and east New Mexico; (2) Laramide granitic systems associated with porphyry-copper deposits in Arizona; and (3) granites of the Colorado Mineral Belt. The studies elucidate relationships amongst tectonic setting, source material, and magma chemistry.

Mesoproterozoic basement samples are from two different felsic suites with distinct elemental and isotopic compositions. The first suite, the “plutonic province”, is dominantly magnesian, calc-alkalic to alkali-calcic, and metaluminous. It has low K2O/Na2O and Rb/Sr, and Nd model ages of 1.56 to 1.40 Ga. The second suite, the “Panhandle igneous complex”, is magnesian, metaluminous, alkalic, and is part of the Mesoproterozoic belt of magmatism that extends from Finland to southwestern United States. Samples from the Panhandle igneous complex demonstrate three episodes of magmatism: the first pulse was intrusion of quartz monzonite at 1380 to 1370 Ma; the second was comagmatic epizonal granite and rhyolite at 1360 to 1350 Ma. Both of these rock types are high-K to slightly ultra-high-K. The third pulse at 1338 to 1330 Ma was intrusion of ultra-high-K quartz syenite. Nd model ages (1.94 to 1.52 Ga) are distinct from those of the “plutonic province” and systematically older than crystallization ages, implying a substantial crustal input to the magmas.

At the Sierrita porphyry-copper deposit in the Mazatzal Province of southeastern Arizona, trace element, Sr, and Nd isotopic compositions were determined for a suite of andesitic and rhyolitic rocks (67 Ma) intruded by granodiorite and granite. Isotopic composition and chemical evolution are well correlated throughout the suite. Andesite has the least negative initial εNd (?4.3) and lowest 87Sr/86Sri (0.7069). It is also the oldest and chemically most primitive, having low concentrations of Rb, SiO2, and high concentrations of transition elements. These parameters change through the system to the youngest unit (granite), which has the most negative εNd (?8.5), the highest 87Sr/86Sri (0.7092), and is chemically most evolved. Correlation between chemical and Nd isotopic evolution probably resulted from a continuous process of progressive assimilation, in which mafic magmas invade and incorporate continental crust. Deposits in Arizona with εNd values more negative than the ?8.5 of Sierrita lie in the older Yavapai province in the northwestern part of the state. The difference in the most negative epsilon Nd implies that Nd isotopic signature is sensitive to the age of the Precambrian domain.

The granites from the Colorado Mineral Belt were emplaced during the transition from Laramide convergence to mid-Tertiary extension. Three different groups of granites are recognized. The first is Laramide and was formed during assimilation-fractional crystallization involving lower crustal mafic source materials; the second and third groups are mid-Tertiary and represent intracrustal melting of heterogeneous sources. This change in source regions and melt regimes in transition from convergence to extension is fundamental to the Mesozoic and Cenozoic evolution of western North America.

Keywords:Granite  Mesoproterozoic  Laramide  Colorado Mineral Belt  North America
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号