A paleomagnetic study of the Mull lava succession |
| |
Authors: | James M. Hall R. L. Wilson Peter Dagley |
| |
Affiliation: | Department of Geology, Dalhousie University, Halifax, Nova Scotia, Canada;Sub-department of Geophysics, University of Liverpool, Liverpool L69 3BX |
| |
Abstract: | ![]() Summary. A paleomagnetic study has been made of a succession of 139 non-overlapping basaltic lavas, representing 91 per cent of the longest remaining succession of flows associated with the Paleogene Mull volcano. All the lavas have experienced considerable hydrothermal alteration, probably at up to several million years after initial magnetization and frequently with alteration to the opaque minerals and the production of new potentially magnetic phases. The question of whether directional remagnetization has taken place while preserving within-unit directional consistency and discreteness of unit mean direction is discussed. Extensive directional remagnetization is excluded as an explanation for the data. If stable directions obtained by alternating field remanence cleaning coincide with original TRM directions then a mean pole position for all temporally independent lava directions from the British Tertiary igneous province is at 71.9° N, 167.2° E, with k:22 and α95:3.0°. This pole is significantly different from the geographic pole. If the difference in palaeomagnetic and geographic poles is interpreted in terms of absolute plate motion, then 2010 km of northwards motion of the western part of the Eurasian Plate, at 3.7 cm/yr, has taken place over the last 55 Myr. This motion has implications for the geological history of the Arctic and for the complexity of mantle motions. |
| |
Keywords: | |
|
|