Abstract: | Most acceleration diagrams show high levels of unpredictability, as a result, it is the best to avoid using diagrams of earthquake acceleration spectra, even if the diagrams recorded at the site in question. In order to design earthquake resistant structures, we, instead, suggest constructing a design spectrum using a set of spectra that have common characteristics to the recorded acceleration diagrams at a particular site and smoothing the associated data. In this study, we conducted a time history analysis and determined a design spectrum for the region near the Lali tunnel in Southwestern Iran. We selected 13 specific ground motion records from the rock site to construct the design spectrum. To process the data, we first applied a base-line correction and then calculated the signal-to-noise ratio (RSN) for each record. Next, we calculated the Fourier amplitude spectra of the acceleration pertaining to the signal window (1), and the Fourier amplitude spectra of the associated noise (2). After dividing each spectra by the square root of the selected window interval, they were divided by each other (1 divided by 2), in order to obtain the RSN ratio (filtering was also applied). In addition, all data were normalized to the peak ground acceleration (PGA). Next, the normalized vertical and horizontal responses and mean response spectrum (50%) and the mean plus-one standard deviation (84%) were calculated for all the selected ground motion records at 5% damping. Finally, the mean design spectrum and the mean plus-one standard deviation were plotted for the spectrums. The equation of the mean and the above-mean design spectrum at the Lali tunnel site are also provided, along with our observed conclusions. |