首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Event sedimentation in low‐latitude deep‐water carbonate basins,Anegada passage,northeast Caribbean
Authors:Jason D Chaytor  Uri S ten Brink
Institution:U.S. Geological Survey, USGS Woods Hole Coastal and Marine Science Center, Woods Hole, MA, USA
Abstract:The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow‐water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef‐ and slope‐derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay‐rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand‐rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (<0.1 mm year?1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea‐level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin‐wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long‐term record of past oceanographic conditions in ocean passages.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号