首页 | 本学科首页   官方微博 | 高级检索  
     

无导数的大范围平方收敛迭代算法及其数值分析
引用本文:郑一,李堂军. 无导数的大范围平方收敛迭代算法及其数值分析[J]. 物探化探计算技术, 2003, 25(3): 246-252
作者姓名:郑一  李堂军
作者单位:青岛建筑工程学院,青岛,266520
摘    要:应用迭代法的困难之处在于:一是迭代公式是否存在导数运算;二是初始值选定是否影响迭代公式的收敛性;三是收敛快速和达到需要精度等问题。我们获得了求方程根不用计算导数的平方收敛迭代公式,并设计了求根的大范围收敛算法,编写了C^ 语言程序,进行了算法和数值分析。与其它算法比较,该算法具有无导数计算、初值任意选定、平方快速收敛、大范围收敛和双精度控制(根的精度和函数值的精度控制)等优点。

关 键 词:平方收敛迭代公式 数值分析 算法 导数 方程
文章编号:1001-1749(2003)03-0246-07
修稿时间:2002-09-02

A DERIVATIVE-FREE ITERATIVE ALGORITHM WITH GLOBAL SECOND-ORDER CONVERGENCE AND ITS NUMERICAL ANALYSES
ZHENG Yi,LI Tang-Jun. A DERIVATIVE-FREE ITERATIVE ALGORITHM WITH GLOBAL SECOND-ORDER CONVERGENCE AND ITS NUMERICAL ANALYSES[J]. Computing Techniques For Geophysical and Geochemical Explorationxploration, 2003, 25(3): 246-252
Authors:ZHENG Yi  LI Tang-Jun
Abstract:The difficulties in using iterative algorithms lay as the following: At first, derivative feasibility; Secondly, sensitivity of iterative convergenc e to initial values; thirdly, the convergent rate and the iterative precision. T he paper presents a derivative-free iterative formula with second-order converge nt rate. Based upon it, a global convergent algorithm for the roots of equatio ns is designed using C ++ programming. The numerical analysis show that i t has several features comparing with conventional iterative algorithms, such as de rivative-free, robustness to the selection of the initial values, high convergen t rate, the global optimization and double precision control (root and function al precisions).
Keywords:derivative  equation  iterative formula  global con vergence
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号