首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传支持向量机的地下工程裂隙岩体注浆量预测
引用本文:姜谙男,梁 冰. 基于遗传支持向量机的地下工程裂隙岩体注浆量预测[J]. 岩土力学, 2006, 27(Z2): 141-145
作者姓名:姜谙男  梁 冰
作者单位:1.大连海事大学 交通工程与物流学院,大连 116026;2 辽宁工程技术大学 力学与工程科学系,阜新 123000
基金项目:国家自然科学基金(No. 50508007)
摘    要:
提出了地下工程裂隙岩体注浆量预测的遗传支持向量机方法,通过支持向量机对实际注浆数据样本进行学习,建立注浆量及其影响因素之间的非线性映射关系,基于这种关系实现注浆量的预测。模型建立过程中,考虑到支持向量机惩罚因子和核参数对预测精度的影响,以预测误差为适应度,采用遗传算法对最佳参数进行搜索。结果表明,本文方法计算快速,预测精度高,是一种注浆量预测的好方法。

关 键 词:地下工程  裂隙岩体  支持向量机  遗传算法   注浆量预测   
收稿时间:2006-07-05

Forecasting grouting in fractured rock mass of underground engineering based on genetic algorithm-support vector machine
JIANG An-nan,LIANG Bing. Forecasting grouting in fractured rock mass of underground engineering based on genetic algorithm-support vector machine[J]. Rock and Soil Mechanics, 2006, 27(Z2): 141-145
Authors:JIANG An-nan  LIANG Bing
Affiliation:1.Traffic and Logistics College, Dalian Maritime University, Dalian 116026, China;2 Department of Mechanics and Engineering Sciences, Liaoning Technical University, Fuxin 123000, China
Abstract:
In order to improve the accuracy and overcome the extra learning problem of ANN, a new method coupling genetic algorithm (GA) and support vector machine (SVM) is proposed to forecast the grouting in the fractured rock mass. By learning samples, the SVM model with optimal penalty factor and kernel parameter which are searched out by using the SVM predicting error as the fitness of GA is established which can reflect the nonlinear relation between the grouting and its affecting factors. The practical examples have been computed to testify the efficiency and ability of this method; and the calculational results show that the method has rapid speed and sufficient predicting accuracy.
Keywords:underground engineer  fracture rock mass  support vector machine  genetic algorithm  grouting forecast  
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号