首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of diagenetic and low-grade metamorphic evolution of chlorite in associated metapelites and metabasites: an integrated TEM and XRD study
Authors:Árkai  M P Mata  Giorgetti  Peacor  & TÓth
Institution:Laboratory for Geochemical Research, Hungarian Academy of Sciences, H-1112 Budapest, Budaoersi út 45, Hungary (;), Department of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
Abstract:Chlorite is a common sheet silicate that occurs in various lithologies over a wide grade range involving diagenesis and low‐grade metamorphism. Thus, the reaction progress of chlorite offers a unique opportunity for direct correlation of zonal classification of metasedimentary rocks based on illite crystallinity with metabasite mineral facies. To provide such correlation, chlorite crystallinity indices, apparent mean crystallite sizes and lattice strains, crystallite size distributions and compositions of chlorite from coexisting metapelites and metabasites were determined by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), analytical electron microscopy (AEM) and electron microprobe (EMP) methods. Samples were from Palaeozoic and Mesozoic formations of the Bükkium (innermost Western Carpathians, Hungary) that underwent Alpine (Cretaceous) orogenic metamorphism. Metapelites range in grade from late diagenesis to epizone, whereas metabasites vary from prehnite–pumpellyite through pumpellyite–actinolite to greenschist facies. Despite significant differences in composition, mineral assemblages and textures, reaction progress, as measured in part by chlorite crystallinity, in metapelites paralleled that in metabasites. Chlorite crystallinity and mean crystallite size increase and the proportion of mixed layers in chlorite decreases, whereas the calculated lattice strain does not change significantly with increasing metamorphic grade. Similar trends, but (especially at higher grades) significant differences, were found in mean crystallite size values using various methods for XRD line profile analyses. The increase in crystallite size with increasing grade was demonstrated also by direct TEM measurements on ion‐milled whole‐rock samples, but with a larger scatter of data at higher grades. In spite of the different kinds of mixed layering in chlorite (Mg‐rich smectitic, mostly random, local corrensite‐like units in metabasites, and Fe‐rich berthierine and dioctahedral smectite in metapelites), XRD‐calculated and TEM‐measured parameters were found to be reliable tools for measuring reaction progress and metamorphic grade of the same degree in both lithotypes.
Keywords:chlorite crystallinity  crystallite size  low-temperature metamorphism  metabasite  metapelite  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号