首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interference fringes on GLORIA side-scan sonar images from the Bering Sea and their implications
Authors:Q J Huggett  A K Cooper  M L Somers  A R Stubbs
Institution:(1) Institute of Oceanographic Sciences, Deacon Laboratory, Brook Road, GU8 5UB Godalming, Surrey, U.K.;(2) U.S. Geological Survey, 345 Middlefield Road, 94301 Menlo Park, CA, USA
Abstract:GLORIA side-scan sonographs from the Bering Sea Basin show a complex pattern of interference fringes sub-parallel to the ship's track. Surveys along the same trackline made in 1986 and 1987 show nearly identical patterns. It is concluded from this that the interference patterns are caused by features in the shallow subsurface rather than in the water column. The fringes are interpreted as a thin-layer interference effect that occurs when some of the sound reaching the seafloor passes through it and is reflected off a subsurface layer. The backscattered sound interferes (constructively or desctructively) with the reflected sound. Constructive/destructive interference occurs when the difference in the length of the two soundpaths is a whole/half multiple of GLORIA's 25 cm wavelength. Thus as range from the ship increases, sound moves in and out of phase causing bands of greater and lesser intensity on the GLORIA sonograph. Fluctuations (or lsquowigglesrsquo) of the fringes on the GLORIA sonographs relate to changes in layer thickness. In principle, a simple three dimensional image of the subsurface layer may be obtained using GLORIA and bathymetric data from adjacent (parallel) ship's tracks. These patterns have also been identified in images from two other systems; SeaMARC II (12 kHz) long-range sonar, and TOBI (30 kHz) deep-towed sonar. In these, and other cases world-wide, the fringes do not appear with the same persistence as those seen in the Bering Sea.
Keywords:Side-scan sonar  interference fringes  sediment layers  thin films  Bering Sea
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号