首页 | 本学科首页   官方微博 | 高级检索  
     


Constraining basin thermal history and petroleum generation using palaeoclimate data in the Piceance Basin,Colorado
Authors:Yao Tong  Daniel E. Ibarra  Jeremy K. Caves  Tapan Mukerji  Stephan A. Graham
Affiliation:1. Department of Energy Resources Engineering, Stanford University, Stanford, CA, USA;2. Department of Earth System Science, Stanford University, Stanford, CA, USA;3. Department of Geological Sciences, Stanford University, Stanford, CA, USA
Abstract:Careful assessment of basin thermal history is critical to modelling petroleum generation in sedimentary basins. In this paper, we propose a novel approach to constraining basin thermal history using palaeoclimate temperature reconstructions and study its impact on estimating source rock maturation and hydrocarbon generation in a terrestrial sedimentary basin. We compile mean annual temperature (MAT) estimates from macroflora assemblage data to capture past surface temperature variation for the Piceance Basin, a high‐elevation, intermontane, sedimentary basin in Colorado, USA. We use macroflora assemblage data to constrain the temporal evolution of the upper thermal boundary condition and to capture the temperature change with basin uplift. We compare these results with the case where the upper thermal boundary condition is based solely upon a simplified latitudinal temperature estimate with no elevation effect. For illustrative purposes, 2 one‐dimensional (1‐D) basin models are constructed using these two different upper thermal boundary condition scenarios and additional geological and geochemical input data in order to investigate the impact of the upper thermal boundary condition on petroleum source rock maturation and kerogen transformation processes. The basin model predictions indicate that the source rock maturation is very sensitive to the upper thermal boundary condition for terrestrial basins with variable elevation histories. The models show substantial differences in source rock maturation histories and kerogen transformation ratio over geologic time. Vitrinite reflectance decreases by 0.21%Ro, source rock transformation ratio decreases 10.5% and hydrocarbon mass generation decreases by 16% using the macroflora assemblage data. In addition, we find that by using the macroflora assemblage data, the modelled depth profiles of vitrinite reflectance better matches present‐day measurements. These differences demonstrate the importance of constraining thermal boundary conditions, which can be addressed by palaeotemperature reconstructions from palaeoclimate and palaeo‐elevation data for many terrestrial basins. Although the palaeotemperature reconstruction compiled for this study is region specific, the approach presented here is generally applicable for other terrestrial basin settings, particularly basins which have undergone substantial subaerial elevation change over time.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号