THE MERCATOR PROJECTION AND THE RHUMB LINE |
| |
Authors: | G. T. M. |
| |
Abstract: | Abstract Introductory Remarks.—A line of constant bearing was known as a Rhumb line. Later Snel invented the name Loxodrome for the same line. The drawing of this line on a curvilinear graticule was naturally difficult and attempts at graphical working in the chart-house were not very successfuL Consequently, according to Germain, in 1318 Petrus Vesconte de Janua devised the Plate Carree projection (“Plane” Chart). This had a rectilinear graticule and parallel meridians, and distances on the meridians were made true. The projection gave a rectilinear rhumb line; but the bearing of this rhumb line was in general far from true and the representation of the earth's surface was greatly distorted in high latitudes. For the former reason it offered no real solution of the problem of the navigator, who required a chart on which any straight line would be a line not alone of constant bearing but also of true bearing; the first condition necessarily postulated a chart with rectilinear meridians, since a meridian is itself a rhumb line, and for the same reason it postulated rectilinear parallels. It follows, therefore, that the meridians also must be parallel inter se, like the parallels of latitude. The remaining desideratum—that for a true bearing—was attained in I569 by Gerhard Kramer, usually known by his Latin name of Mercator, in early life a pupil of Gemma Frisius of Louvain, who was the first to teach triangulation as a means for surveying a country. Let us consider, then, that a chart is required to show a straight line as a rhumb line of true bearing and let us consider the Mercator projection from this point of view. |
| |
Keywords: | |
|
|