Abstract: | We report results of ultra wide-band radar sea spike experiments using steep and weakly breaking non-linear water surface features in a wave tank. To generate these features we used a 1 s paddle wave and wind waves for a sequence of wind speeds. A scanning laser was used to measure synchronously the surface slope profile across 12 cm along the wave propagation direction once per radar pulse. A time domain reflectometer (TDR) radar transmitted short horizontally polarized pulses at X-band, several hundred picoseconds long, to give a range resolution of 10 cm. A radar range of 36 cm was digitally sampled so that surface feature echoes could be tracked through the area continuously with 5 ms temporal resolution with each instrument. We report results considering the wave slope component in the propagation direction and the corresponding curvature component. For the conditions studied, two types of features which produce sea spike radar echoes were generated–a non-linear feature near the crest front of the wind wave, caused by extreme steepening as a result of the passage of the paddle wave, and a steepened blocked wind wave in the trough of the paddle wave, caused by the local orbital current of the 1 s wave being nearly equal to and opposite the phase velocity of the wind wave. |