首页 | 本学科首页   官方微博 | 高级检索  
     检索      

香港牡蛎二倍体及三倍体幼虫生物学特征比较
引用本文:秦艳平,张跃环,莫日馆,李军,肖述,马海涛,喻子牛.香港牡蛎二倍体及三倍体幼虫生物学特征比较[J].海洋科学,2020,44(3):123-128.
作者姓名:秦艳平  张跃环  莫日馆  李军  肖述  马海涛  喻子牛
作者单位:中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室 广东省应用海洋生物学重点实验室, 广东 广州 501310;南海生物资源开发与利用协同创新中心, 广东 广州 501275;中国科学院大学, 北京 100049,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室 广东省应用海洋生物学重点实验室, 广东 广州 501310;南海生物资源开发与利用协同创新中心, 广东 广州 501275,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室 广东省应用海洋生物学重点实验室, 广东 广州 501310;南海生物资源开发与利用协同创新中心, 广东 广州 501275;中国科学院大学, 北京 100049;广西阿蚌丁海产科技有限公司, 广西 南宁 530000,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室 广东省应用海洋生物学重点实验室, 广东 广州 501310;南海生物资源开发与利用协同创新中心, 广东 广州 501275,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室 广东省应用海洋生物学重点实验室, 广东 广州 501310;南海生物资源开发与利用协同创新中心, 广东 广州 501275,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室 广东省应用海洋生物学重点实验室, 广东 广州 501310;南海生物资源开发与利用协同创新中心, 广东 广州 501275,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室 广东省应用海洋生物学重点实验室, 广东 广州 501310;南海生物资源开发与利用协同创新中心, 广东 广州 501275
基金项目:国家重点研发计划专项(2018YFD0901400);广东省科技厅项目(2013B020201002,2014B020202011,2014B030301064);国家农业产业体系建设项目(CARS-48)
摘    要:为了评估香港牡蛎二倍体及三倍体幼虫生物学特征,于2013~2015年,在湛江和北海两地比较了二倍体及三倍体幼虫生长、存活及变态差异,计算了三倍体优势率,评估了倍性与环境效应互作对其表型性状的影响。结果表明:三倍体D形幼虫显著大于二倍体幼虫,之后,伴随着个体增长,生长优势逐渐增大,15日龄时的三倍体优势率为8.9%~9.1%。三倍体幼虫存活力与二倍体相当,未出现大量致死现象。三倍体变态规格显著大于二倍体,其优势率为5.1%~5.3%;三倍体变态时间显著低于二倍体,但其变态率与二倍体相当,不存在显著差异(p>0.05)。经过双因子分析模型的方差分析检测,发现倍性和环境效应都会对香港牡蛎幼虫生长产生显著影响(p<0.001),环境是影响幼虫存活率及变态的主要因子(p<0.05)。

关 键 词:香港牡蛎  三倍体  幼虫生物学  P×E互作
收稿时间:2019/8/27 0:00:00
修稿时间:2019/9/18 0:00:00

Comparison of biological characteristics between diploid and triploid Crassostrea hongkongensis larvae
QIN Yan-ping,ZHANG Yue-huan,MO Ri-guan,LI Jun,XIAO Shu,MA Hai-tao and YU Zi-niu.Comparison of biological characteristics between diploid and triploid Crassostrea hongkongensis larvae[J].Marine Sciences,2020,44(3):123-128.
Authors:QIN Yan-ping  ZHANG Yue-huan  MO Ri-guan  LI Jun  XIAO Shu  MA Hai-tao and YU Zi-niu
Institution:Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501310, China;South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China;University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501310, China;South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501310, China;South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China;University of Chinese Academy of Sciences, Beijing 100049, China;Guangxi A Bang-ding Marine Technology Company, Nanning 530000, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501310, China;South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501310, China;South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501310, China;South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China and Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501310, China;South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
Abstract:Survival, growth, and metamorphosis of diploid and triploid larvae of the Hong Kong oyster Crassostrea hongkongensis were investigated. Larvae were collected from sites at Zhangjiang and Beihai from 2013 to 2015. The advantage offered and the effects of ploidy and environment on phenotype were assessed. Triploid D larvae were significantly larger than diploid larvae. This growth advantage gradually increased, reaching 8.9%-9.1% at the age of 15 days. No significant mortality was observed, and viability of diploid and triploid larvae was comparable. At metamorphosis, triploid larvae were larger than diploid larvae, with a triploid advantage of 5.1%-5.3%. Moreover, the duration of metamorphosis of triploid larvae was shorter than that of diploid larvae. No notable differences in metamorphosis as such are observed between diploid and triploid larvae. Using the P×E method, ploidy and environment are found to significantly influence larval growth (P<0.001). Environment is the primary factor that affects survival and metamorphosis of Hong Kong oyster larvae (P<0.05).
Keywords:Crassostrea hongkongensis  triploid  biological characteristics  Ploidy and environment interaction
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《海洋科学》浏览原始摘要信息
点击此处可从《海洋科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号