首页 | 本学科首页   官方微博 | 高级检索  
     


Two phase modal analysis of nonlinear sloshing in a rectangular container
Authors:M.R. Ansari  R.D. Firouz-Abadi  M. Ghasemi
Affiliation:1. Mechanical Engineering Department, Tarbiat Modares University, Tehran 14115-143, Iran;2. Department of Aerospace Engineering, Sharif University of Technology, Tehran 11115-8639, Iran
Abstract:Sloshing, or liquid free surface oscillation, in containers has many important applications in a variety of engineering fields. The modal method can be used to solve linear sloshing problems and is the most efficient reduced order method that has been used during the previous decade. In the present article, the modal method is used to solve a nonlinear sloshing problem. The method is based on a potential flow solution that implements a two-phase analysis on sloshing in a rectangular container. According to this method, the solution to the mass conservation equation, with a nonpenetration condition at the tank walls, results in velocity potential expansion; this is similar to the mode shapes used in modal method. The kinematic and dynamic boundary conditions create a set of two-space-dimensional differential equations with respect to time. The numerical solution of this set of differential equations, in the time domain, predicts the time response of interfacial oscillations. Modal method solutions for the time response of container sloshing due to lateral harmonic oscillations show a good agreement with experimental and numerical results reported in the literature.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号