Temporal, geomagnetic and related attributes of kimberlite magmatism at Ekati, Northwest Territories, Canada |
| |
Authors: | Grant Lockhart, Herman Grü tter,Jon Carlson |
| |
Affiliation: | a BHP-Billiton Diamonds Inc., #8-2604 Enterprise Way, Kelowna, B.C., Canada V1X 7Y5 b Mineral Services Canada Inc., Vancouver, B.C., Canada |
| |
Abstract: | This paper outlines the development of a multi-disciplinary strategy to focus exploration for economic kimberlites on the Ekati property. High-resolution aeromagnetic data provide an over-arching spatial and magnetostratigraphic framework for exploration and kimberlite discovery at Ekati, and hence also for this investigation. The temporal, geomagnetic, spatial and related attributes of kimberlites with variable diamond content have been constrained by judiciously augmenting the information gathered during routine exploration with detailed, laboratory-based or field-based investigations. The natural remanent magnetisation of 36 Ekati kimberlites has been correlated with their age as determined by isotopic dating techniques, and placed in the context of a well-constrained geomagnetic polarity timescale. Kimberlite magmatism occurred over the period 75 to 45 Ma, in at least five temporally discrete intrusive episodes. Based on current evidence, the older kimberlites (75 to 59 Ma) have low diamond contents and are distributed throughout the property. Younger kimberlites (56 to 45 Ma) have moderate to high diamond contents and occur in three distinct intrusive corridors with NNE to NE orientations. Economic kimberlite pipes erupted at 55.4±0.4 Ma along the A154-Lynx intrusive corridor, which is 7 km wide and oriented at 015°, and at 53.2±0.3 Ma along the Panda intrusive corridor, which is 1 km wide and oriented at 038°. The intrusion ages straddle a paleopole reversal at Chron C24n, consistent with the observation that the older economic kimberlites present as aeromagnetic “low” anomalies while the younger economic pipes are characterised as aeromagnetic “highs”. The aeromagnetic responses for these kimberlites are generally muted because they contain volcaniclastic rock types with low magnetic susceptibility. Kimberlites throughout the Ekati property carry a primary natural magnetic remanence (NRM) vector in Ti-bearing groundmass magnetite, and it dominates over vectors related to induced magnetisation. Magnetostratigraphic correlation of Ekati kimberlites may therefore present a powerful adjunct to existing exploration techniques, mainly because the diamond content of Ekati kimberlites apparently is related more to the age of eruption than to any other parameter investigated in this work. |
| |
Keywords: | Ekati Kimberlite magmatism Geomagnetism Magnetic anomaly Exploration |
本文献已被 ScienceDirect 等数据库收录! |
|