首页 | 本学科首页   官方微博 | 高级检索  
     


Three‐dimensional finite elements for the analysis of soil contamination using a multiple‐porosity approach
Authors:Abbas El‐Zein  John P. Carter  David W. Airey
Abstract:A three‐dimensional finite‐element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non‐equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro‐pores of aggregated topsoils, as well as non‐equilibrium sorption. A Galerkin weighted‐residual statement for the three‐dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer. Copyright © 2005 John Wiley & Sons, Ltd.
Keywords:advection–  dispersion  finite element method  multiple‐porosity  contaminant migration  Laplace transform
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号