基于GF-1号影像的南方水稻种植信息提取 |
| |
引用本文: | 林娜,陈宏,李志鹏,赵健. 基于GF-1号影像的南方水稻种植信息提取[J]. 地理空间信息, 2021, 19(3): 60-63,95. DOI: 10.3969/j.issn.1672-4623.2021.03.016 |
| |
作者姓名: | 林娜 陈宏 李志鹏 赵健 |
| |
作者单位: | 福建省农业科学院数字农业研究所,福建福州 350003;福建省农业科学院数字农业研究所,福建福州 350003;福建省农业科学院数字农业研究所,福建福州 350003;福建省农业科学院数字农业研究所,福建福州 350003 |
| |
基金项目: | 福建省农业科学院数字农业研究所公益资助项目 |
| |
摘 要: | 针对南方复杂地区水稻遥感信息提取研究中机器自动学习分类研究较少、分类精度不高的问题,以福建省三明市建宁县溪口镇为研究区,基于GF-1号卫星影像,采用面向对象的随机森林遥感分类算法对研究区内水稻田信息进行提取.首先通过优化面向对象分割参数和随机森林分类模型参数,提取并调用了影像中的多种特征;再对光谱特征、植被指数特征、纹...
|
关 键 词: | 随机森林 面向对象 水稻 特征优选 GF-1号 |
Information Extraction of Southern Rice Planting Based on GF-1 Image |
| |
Abstract: | In order to resolve the problem of insufficient study in machine automatic learning and low accuracy of remote sensing classification for the extraction of the rice in complex southern regions,taking Xikou Town,Jianning County,Sanming City,Fujian Province as the research area,we used an object-oriented random forest remote sensing classification method to extract rice information based on GF-1 satellite images in the research area.By adjusting object-oriented segmentation parameters and random forest classification model parameters,we used the characteristics of remote sensing images to optimize the characteristic space of spectral feature,vegetation index feature,texture feature and geometric feature,and set up four features of multi-selection test for comparison.Then,we obtained the optimal model of classification.The experimental results show that the extraction accuracy of rice based on the object-oriented random forest classification method reaches 90%,the classification overall accuracy reaches 87%,the Kappa is 0.85,and there are fewer missing classification and misclassification phenomena compared to other test results,which achieves high-precision automatic identification of rice information in southern region.This approach has few calculation features and is easy to implement,which can provide reference value for the application of high resolution satellite images in automatic crop extraction in complex southern regions. |
| |
Keywords: | random forest object-oriented rice optimal feature selection GF-1 |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
|