首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于Harris-Laplace算法的亚像素角点检测方法
引用本文:高翔,万成浩,李润生. 一种基于Harris-Laplace算法的亚像素角点检测方法[J]. 测绘科学技术学报, 2017, 0(5): 475-480. DOI: 10.3969/j.issn.1673-6338.2017.05.008
作者姓名:高翔  万成浩  李润生
作者单位:信息工程大学,河南郑州,450001
摘    要:为了解决Harris-Laplace检测算法的角点坐标偏移与像素级角点的问题,提出了基于Harris-Laplace算法的亚像素角点检测方法。该方法首先用原始图像与高斯函数进行卷积生成多尺度空间,在原始图像和多尺度空间图像上各自提取Harris-Laplace角点;然后以多尺度空间角点为中心向原始图像投影,统计原始图像上投影区域内的角点形成角点集群,并结合多尺度空间角点响应值对集群角点进行筛选;最后采用位置(坐标)加权平均法确定角点的精确坐标。实验结果表明,该方法能够提供稳定抗噪、尺度不变的亚像素精度角点。

关 键 词:角点检测  多尺度空间  角点集群  角点响应值  亚像素精度

A Sub-Pixel Corner Detection Method Based on Harris-Laplace Algorithm
Abstract:In order to solve the problem of the drifting of pixel position and the pixel precision of Harris-Laplace detection algorithm,a sub-pixel corner detection method based on Harris-Laplace algorithm is proposed.Firstly,the multi-scale space is generated by Guassian convolution with the original image,the Harris-Laplace corners are extracted both in the original image and multi-scale images.Then,the corners clusters are acquired by projection from scale space images to the original image,and the comers in clusters are sifted by the response value of the multi-scale space corners.Finally,the exact coordinates of corners are calculated by the coordinate-weighted average.Experimental results indicate that the proposed method can provide scale invariant sub-pixel corner points with the anti-noise stability.
Keywords:comers detection  multi-scale space  corners clusters  corners response value  sub-pixel precision
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号