首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of presence of a circumpolar region on buoyancy-driven circulation
Authors:I. Ishikawa  Y. Yamanaka  N. Suginohara
Affiliation:(1) Center for Climate System Research, University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153 Tokyo, Japan
Abstract:Effects of the presence of a circumpolar region on buoyancy-driven circulation are investigated by using an idealized numerical ocean model. Comparison of circulation and meridional density (heat) transport is made between a closed ocean and an ocean with a cyclic gap near its southern boundary. The presence of the circumpolar region leads to disconnection of the meridional overturning across the circumpolar region. And the circumpolar eastward flow reaches the bottom of the ocean. It is essential for this that the pycnocline is deeper than the bottom of the gap. Since the amount of the mass transported northward must return southward at the levels deeper than the bottom of the cyclic gap, the weak stratification, hence weak vertical geostrophic shear, at the deeper levels leads to inactive communication across the circumpolar region. Meridional heat transport across the circumpolar region is made mainly by horizontal diffusion for the ocean with the cyclic gap, while the contribution of the advection is dominant for the closed ocean. Sensitivity of meridional heat transport to change in horizontal diffusivity is studied. The meridional heat transport for the ocean with the cyclic gap is more sensitive than for the closed ocean. The change in heat transport occurs not only in the circumpolar region but also in the rest of the ocean. It is suggested that subgrid scale phenomena, especially mesoscale eddies, in the circumpolar region controls the whole ocean to a great extent.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号