首页 | 本学科首页   官方微博 | 高级检索  
     

2015-2019年武汉市湖泊水质时空变化
引用本文:代晓颖,徐栋,武俊梅,丰俊,邹书成,尹珩. 2015-2019年武汉市湖泊水质时空变化[J]. 湖泊科学, 2021, 33(5): 1415-1424
作者姓名:代晓颖  徐栋  武俊梅  丰俊  邹书成  尹珩
作者单位:武汉市环境保护科学研究院,武汉430015;武汉市环境保护科学研究院,武汉430015;中国科学院水生生物研究所淡水生态与生物技术国家重点实验室,武汉430072;中国科学院水生生物研究所淡水生态与生物技术国家重点实验室,武汉430072;中国地质大学(武汉)湖北省水环境污染系统控制和治理工程技术研究中心,武汉430074;武汉市环境监测中心,武汉430015
基金项目:长江生态环境保护修复联合研究一期项目(2019-LHYJ-01-0208-21)资助.
摘    要:
为探究"十三五"期间武汉市湖泊水质变化特征及规律,分析当前武汉市湖泊水环境的主要问题及成因,为武汉市水生态环境保护"十四五"规划提供科学支撑,以武汉市166个湖泊为研究对象,根据武汉市环境监测中心2015-2019年对各个湖泊的监测数据,采用水质综合污染指数、富营养化状态评价、动态度分析等方法,对武汉市湖泊水环境进行综...

关 键 词:武汉市  湖泊  富营养化  综合污染指数  动态度
收稿时间:2020-09-27
修稿时间:2021-01-16

Spatiotemporal variations of water quality of lakes in Wuhan from 2015 to 2019*
Dai Xiaoying,Xu Dong,Wu Junmei,Feng Jun,Zou Shucheng,Yin Heng. Spatiotemporal variations of water quality of lakes in Wuhan from 2015 to 2019*[J]. Journal of Lake Science, 2021, 33(5): 1415-1424
Authors:Dai Xiaoying  Xu Dong  Wu Junmei  Feng Jun  Zou Shucheng  Yin Heng
Affiliation:Wuhan Institute of Environmental Protection Science, Wuhan 430015, P.R.China;Wuhan Institute of Environmental Protection Science, Wuhan 430015, P.R.China;State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R.China;State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R.China;Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, P.R.China;Wuhan Environmental Monitoring Center, Wuhan 430015, P.R.China
Abstract:
To explore the variation trend of water quality of lakes in Wuhan during the 13th Five-Year Plan period, analyze the main problems and causes of the water environment of lakes in Wuhan, and provide scientific support for the 14th Five-Year Plan of water environment protection in Wuhan, 166 lakes were selected as the research objects. Based on the monitoring data of each lake from 2015 to 2019 derived from the Wuhan Environmental Monitoring Center, the comprehensive pollution index, eutrophication analysis, dynamic degree analysis and other methods were used to evaluate the water environment of lakes in Wuhan. The results showed that: 1) The water quality of lakes in Wuhan was generally improved. The comprehensive pollution index of lakes decreased by 7.74% compared with that in 2015, and the eutrophication status of most lakes showed a trend of improvement. However, it was difficult to achieve continuous improvement of the water quality of those lakes. 2) The average concentrations of total phosphorus (TP), ammonia nitrogen, CODCr and CODMn showed a downward trend from 2015 to 2019, but the average concentrations of TP of 47% of the lakes were inferior to the class IV evaluation standard. The phosphorus was the main factor restricting the water quality of the lakes. 3) From 2015 to 2019, the comprehensive pollution index of lakes in the central districts of Wuhan decreased, and the eutrophication status was improved. Nevertheless, the comprehensive pollution index of Qingshanbei Lake and South Lake was relatively high, and the main factors affecting the water quality of lakes in the central districts were the discharge from the outlet and internal pollution of sediment. The improvement of water quality of lakes in the suburban area was still under stress, which resulted from agricultural non-point source pollution and industrial production. More lakes entered a serious eutrophication status in the Dongxihu Lake system, and the comprehensive pollution index of lakes in the Houhu Lake system increased. The decrease of self-purification ability caused by lake fragmentation was also an important factor affecting water quality.
Keywords:Wuhan  lake  eutrophication  comprehensive pollution index  dynamic degree
本文献已被 万方数据 等数据库收录!
点击此处可从《湖泊科学》浏览原始摘要信息
点击此处可从《湖泊科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号