Abstract: | ![]() A solution is derived for the heat flow and consolidation which occur when a heat source is buried deep in a porous thermoelastic soil having anisotropic flow properties. This solution is used to examine the pore pressure generation and dissipation near both point and cylindrical heat sources. An increase in temperature will tend to generate an increase in excess pore pressure. However, the pore water will tend to flow from regions of high excess pore pressure to regions of low excess pore pressure, and so consolidation will occur, and temperature-generated excess pore pressures will tend to dissipate. Many natural soils exhibit horizontal layering and so have a higher horizontal than vertical permeability. It is shown that in soils the excess pore pressure generated by a heat source is significantly less than that in an isotropic soil having an equal vertical permeability. |