首页 | 本学科首页   官方微博 | 高级检索  
     


A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data
Affiliation:1. Division of Environment, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China;2. Institute for the Environment, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China;3. Department of Mathematics, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
Abstract:Light Detection and Ranging (Lidar) can generate three-dimensional (3D) point cloud which can be used to characterize horizontal and vertical forest structure, so it has become a popular tool for forest research. Recently, various methods based on top-down scheme have been developed to segment individual tree from lidar data. Some of these methods, such as the one developed by Li et al. (2012), can obtain the accuracy up to 90% when applied in coniferous forests. However, the accuracy will decrease when they are applied in deciduous forest because the interlacing tree branches can increase the difficulty to determine the tree top. In order to solve challenges of the tree segmentation in deciduous forests, we develop a new bottom-up method based on the intensity and 3D structure of leaf-off lidar point cloud data in this study. We applied our algorithm to segment trees in a forest at the Shavers Creek Watershed in Pennsylvania. Three indices were used to assess the accuracy of our method: recall, precision and F-score. The results show that the algorithm can detect 84% of the tree (recall), 97% of the segmented trees are correct (precision) and the overall F-score is 90%. The result implies that our method has good potential for segmenting individual trees in deciduous broadleaf forest.
Keywords:Lidar  Deciduous forest  Tree segmentation  Intensity  3-D structure  Bottom-up
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号