首页 | 本学科首页   官方微博 | 高级检索  
     

压缩感知在医学图像重建中的最新进展
引用本文:焦鹏飞, 李亮, 赵骥. 压缩感知在医学图像重建中的最新进展[J]. CT理论与应用研究, 2012, 21(1): 133-147.
作者姓名:焦鹏飞  李亮  赵骥
作者单位:1. 清华大学工程物理系,北京,100084
2. 清华大学粒子技术与辐射成像教育部重点实验室,北京,100084
基金项目:国家自然科学基金,北京市自然科学基金
摘    要:CS理论是一种新兴的信号获取与处理理论,通过减少信号重建所需的数据(少于奈奎斯特定理所要求的最小数目),来缩短信号采样时间,减少计算量,并在一定程度上保持原有图像的重建质量。由于该理论的这些显著优点,使得其在医学成像领域引起了广泛关注,取得了很大进展。本文介绍了压缩感知理论在医学成像中的发展历程和最新进展,详细介绍一种基于字典学习的新型压缩感知自适应重建算法,最后通过计算机模拟实验对该方法进行了初步验证。

关 键 词:CS理论  医学成像  图像重建  字典学习  K-SVD
收稿时间:2011-09-30

New Advances of Compressed Sensing in Medical Image Reconstruction
JIAO Peng-fei, LI Liang, ZHAO Ji. New Advances of Compressed Sensing in Medical Image Reconstruction[J]. CT Theory and Applications, 2012, 21(1): 133-147.
Authors:JIAO Peng-fei  LI Liang  ZHAO Ji
Affiliation:1.Department of Eng ng 100084,China 2.Key Laboratory try of Education, ineering Physics,Tsinghua University,Beiji of Particle&Radiation Imaging,Minis Tsinghua University,Beijing 100084,China
Abstract:Compressed Sensing(CS) is a new signaln acquisition and processing theory.It can decrease the signal sampling time and computation cost by reducing the required data for signal recovery while maintaining good image quality.The CS theory has drawn a lot of attention and made great progress in medical imaging since it was proposed.This paper introduces the history of CS theory and the recent improvement in medical imaging. Moreover,we focus on the dictionary learning algorithm which is a new CS-based adaptive reconstruction algorithm.At last,the result of simulation is presented to convince the algorithm.
Keywords:compressed sensing  medical imaging  image construction  dictionary learning  K-SVD algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《CT理论与应用研究》浏览原始摘要信息
点击此处可从《CT理论与应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号