摘 要: | Freezing damage results in the dehydration of plant cells and reduces the photosynthetic capacity of plants, which causes significant losses to ecology and economy. Over the past 40 years, global warming has reduced the frequency and intensity of frost events while bringing forward the spring phenology of plants, increasing the exposure of their leaves and flowers to harsh cold temperatures. Therefore, the dual effects of climate warming should be considered in order to accurately assess the changes of plant freezing damage. To date, there is no systematic analysis of plant freezing damage in different climatic regions of China. Based on phenological observation records from the China Phenological Observation Network, leaf frost damage of four common woody plants (Ulmus pumila, Robinia pseudoacacia, Salix babylonica, Fraxinus chinensis) in the spring over the past 40 years was calculated, and the spatio-temporal patterns were analyzed. We also investigated the change in the occurrence time of maximum frost damage (TMFD) and its relationship with plant phenology. The results show that: 1) Most species presented an overall trend towards an earlier leaf unfolding date, and the advancing trend was significant and greater than 1 d/a in about 60% of the regions (P<0.05). 2) The TMFD occurred earlier in 72.22%-83.03% of the regions, which was closely related to plants' earlier leaf unfolding date. The TMFD of all species advanced the most (8.3 days) in the temperate climate zone, followed by the warm temperate, subtropical, plateau, and cold temperate zones. 3) The leaves of U. pumila, R. pseudoacacia and S. babylonica suffered more freezing damage in the spring, and the most significant freezing damage was mainly found in the north of 50°N region and part of the west of the Qinghai-Tibet Plateau. In comparison, the leaves of F. chinensis suffered less frost damage due to later leaf unfolding date and stronger leaf frost resistance. With regard to interannual variations, the average freezing damage of U. pumila, R. pseudoacacia and S. babylonica increased significantly (P<0.05), but that of F. chinensis did not change obviously. In addition, the freezing damage of U. pumila and S. babylonica increased the most in the cold temperate zone, while that of R. pseudoacacia increased in about 10% of the regions in the plateau climate zone, and 3%-6% of the regions in the cold temperate, temperate, and warm temperate climate zones. The freezing damage of F. chinensis merely increased in the warm temperate zone. The results of this study can provide a reference for assessing the risk of plant freezing damage accurately and help develop regional-specific response and adaptation strategies to climate change. © 2023, Editorial office of PROGRESS IN GEOGRAPHY. All rights reserved.
|