首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the use of a cloud modification factor for solar UV (290–385?nm) spectral range
Authors:I Foyo-Moreno  I Alados  F J Olmo  J Vida  L Alados-Arboledas
Institution:(1)  Grupo de Física de la Atmósfera, Departamento de Física Aplicada, Universidad de Granada, Granada, Spain, ES;(2)  Grupo de Física de la Atmósfera, Departamento de Física Aplicada, Universidad de Málaga, Málaga, Spain, ES
Abstract:Summary  Knowledge of ultraviolet radiation is necessary in different applications, in the absence of measurements, this radiometric flux must be estimated from available parameters. To compute this flux under all sky conditions one must consider the influence of clouds. Clouds are the largest modulators of the solar radiative flux reaching the Earth’s surface. The amount and type of cloud cover prevailing at a given time and location largely determines the amount and type of solar radiation received at the Earth’s surface. This cloud radiative effect is different for the different solar spectral bands. In this work, we analyse the cloud radiative effect over ultraviolet radiation (290–385 nm). This could be done by defining a cloud modification Factor. We have developed such cloud modification Factor considering two different types of clouds. The efficiency of the cloud radiative effect scheme has been tested in combination with a cloudless sky empirical model using independent data sets. The performance of the model has been tested in relation to its predictive capability of global ultraviolet radiation. For this purpose, data recorded at two radiometric stations are used. The first one is located at the University of Almería, a seashore location (36.83° N, 2.41° W, 20 m a.m.s.l.), while the second one is located at Granada (37.18° N, 3.58° W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables that cover the years 1993–94 in Almería and 1994–95 in Granada. Cloud cover information provided by the Spanish Meteorological Service has been include to compute the clouds radiative effect. After our study, it appears that the combination of an appropriate cloudless sky model with the cloud modification Factor scheme provides estimates of ultraviolet radiation with mean bias deviation of about 5% that is close to experimental errors. Comparisons with similar formulations of the cloud radiative effect over the whole solar spectrum provides evidence for the spectral dependency of the cloud radiative effect. Received November 15, 1999 Revised September 11, 2000
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号