A Parametric Approach for Dealing with Compositional Rounded Zeros |
| |
Authors: | Javier Palarea-Albaladejo Josep A. Martín-Fernández Juan Gómez-García |
| |
Affiliation: | (1) Departamento de Informática de Sistemas, Universidad Católica San Antonio, Campus de Los Jerónimos, 30107 Murcia, Spain;(2) Departament d’Informàtica i Matemàtica Aplicada, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain;(3) Departamento de Métodos Cuantitativos para la Economía, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain |
| |
Abstract: | In this work, a parametric approach for replacing data below the detection limit, also known as rounded zeros, in compositional data sets is proposed. Compositional rounded zeros correspond to small proportions of some whole that cannot be reliably detected by the analytical instruments under given operating conditions. This kind of zeros appear frequently in the data collection process in geosciences. They must be treated in an adequate way before some multivariate analysis can be applied. Our procedure results from a modification of the Expectation-Maximization (EM) algorithm and is based on the additive log-ratio transformation. Its coherence with the nature of compositional data and with basic operations in the simplex sample space is checked. Using real data sets, we find that this approach improves other parametric and non-parametric techniques for compositional rounded zeros. |
| |
Keywords: | Additive log-ratio transformation Compositional data EM algorithm Simplex |
本文献已被 SpringerLink 等数据库收录! |
|