首页 | 本学科首页   官方微博 | 高级检索  
     

一种低表面亮度星系的自动搜索算法newline--YOLOX-CS
作者姓名:冯雪琦  屠良平  仲峥迪  李娟  李馨
作者单位:辽宁科技大学理学院 鞍山 114051;辽宁科技大学理学院 鞍山 114051;闽南师范大学数学与统计学院 漳州 363000
基金项目:国家自然科学基金项目(U1731128)资助
摘    要:低表面亮度星系(Low Surface Brightness Galaxy, LSBG)的特征对于理解星系整体特征非常重要, 通过现代的机器学习特别是深度学习算法来搜寻扩充低表面亮度星系样本具有重要意义. LSBG因特征不明显而难以用传统方法进行自动和准确辨别, 但深度学习确具有自动找出复杂且有效特征的优势, 针对此问题提出了一种可用于在大样本巡天观测项目中搜寻LSBG的算法---YOLOX-CS (You Only Look Once version X-CS). 首先通过实验对比5种经典目标检测算法并选择较优的YOLOX算法作为基础算法, 然后结合不同注意力机制和不同优化器, 构建了YOLOX-CS的框架结构. 数据集使用的是斯隆数字化巡天(Sloan Digital Sky Survey, SDSS)中的图像, 其标签来自于$\alpha.40$-SDSS DR7 (40%中性氢苜蓿巡天与第7次数据发布的斯隆数字化巡天的交叉覆盖天区)巡天项目中的LSBG, 由于该数据集样本较少, 还采用了深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Networks, DCGAN)模型扩充了实验测试数据. 通过与一系列目标检测算法对比后, YOLOX-CS在扩充前后两个数据集中搜索LSBG的召回率和AP (Average Precision)值都有较好的测试结果, 其在未扩充数据集的测试集中的召回率达到97.75%, AP值达到97.83%, 在DCGAN模型扩充的数据集中, 同样测试集下进行实验的召回率达到99.10%, AP值达到98.94%, 验证了该算法在LSBG搜索中具有优秀的性能. 最后, 将该算法应用到SDSS部分测光数据上, 搜寻得到了765个LSBG候选体.

关 键 词:星系: 普通   方法: 数据分析   方法: 目标检测   技术: 图像处理
收稿时间:2022-12-15
点击此处可从《天文学报》浏览原始摘要信息
点击此处可从《天文学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号