Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea |
| |
Authors: | Saro Lee Joo-Hyung Ryu Ii-Soo Kim |
| |
Affiliation: | (1) Geoscience Information Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), 30 Gajeong-Dong, Yuseong-Gu, Daejeon, 305-350, South Korea;(2) Ocean Satellite Research Group, Korea Ocean Research and Development Institute (KORDI), 1270 Sa 2-dong, Sangnuk-Gu, Ansan-Si, 426-744, South Korea;(3) Domestic Exploration Team I, Korea National Oil Corporation (KNOC), 1588–14 Gwanyang-Dong, Dongan-Gu, Anyang-Si, 431-711, South Korea |
| |
Abstract: | The likelihood ratio, logistic regression, and artificial neural networks models are applied and verified for analysis of landslide susceptibility in Youngin, Korea, using the geographic information system. From a spatial database containing such data as landslide location, topography, soil, forest, geology, and land use, the 14 landslide-related factors were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by likelihood ratio, logistic regression, and artificial neural network models. Before the calculation, the study area was divided into two sides (west and east) of equal area, for verification of the models. Thus, the west side was used to assess the landslide susceptibility, and the east side was used to verify the derived susceptibility. The results of the landslide susceptibility analysis were verified using success and prediction rates. The verification results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. |
| |
Keywords: | Landslide susceptibility Likelihood ratio Logistic regression Artificial neural network Korea |
本文献已被 SpringerLink 等数据库收录! |
|