首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved Numerical Computing Method for the 3D Tidally Induced Lagrangian Residual Current and Its Application in a Model Bay with a Longitudinal Topography
Abstract:An improved method for computing the three-dimensional(3 D) first-order Lagrangian residual velocity(uL) is estab-lished. The method computes tidal body force using the harmonic constants of the zeroth-order tidal current. Compared with using the tidal-averaging method to compute the tidal body force, the proposed method filters out the clutter other than the single-frequency tidal input from the open boundary and obtains uL that is more consistent with the analytic solution. Based on the new method, uL is calculated for a wide bay with a longitudinal topography. The strength and pattern of uL are mostly determined by the parts of the tidal body force related to the vertical mixing of the Stokes' drift and the Coriolis effect, with a minor contribution from the advection effect. The geometrical shape of the bay can influence uL through the topographic gradient. The magnitude of uL increases with the increases in tidal energy input and vertical eddy viscosity and decreases in terms of the bottom friction coefficient.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号