首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coherence of long-term variations of zooplankton in two sectors of the California Current System
Authors:Bertha E Lavaniegos  Mark D Ohman
Institution:a Departamento de Oceanografía Biológica, Centro de Investigación Científica y Educación Superior de Ensenada, km 107 Carretera Tijuana-Ensenada, Apdo. Postal 360, 22800 Ensenada, Baja California, Mexico
b Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, 9500 Gilman Dr., San Diego, La Jolla, CA 92093-0218, USA
Abstract:We analyzed long-term (56-year) variations in springtime biomass of the zooplankton of the California Current System from two primary regions sampled by CalCOFI: Southern California (SC) and Central California (CC) waters. All organisms were enumerated from the plankton samples and converted to organic carbon biomass using length-carbon relationships, then aggregated into 19 major taxa. Planktonic copepods dominate the carbon biomass in both SC (59%) and CC (46%), followed by euphausiids (18% and 25% of mean biomass in SC and CC, respectively). Pelagic tunicates, especially salps and doliolids, constituted a higher fraction of the biomass in CC (13%) than in SC (5%). There was no long-term trend detectable in total zooplankton carbon biomass, in marked contrast to a decline in zooplankton displacement volume in both regions. The difference between these biomass metrics is accounted for by a long-term decline in pelagic tunicates (particularly salps), which have a relatively high ratio of biovolume:carbon. The decline in pelagic tunicates was accompanied by a long-term increase in water column density stratification. No other taxa showed a decline over the duration of the study, apart from salps and pyrosomes in SC and doliolids in CC. Some zooplankton taxa showed compensatory increases over the same time period (ostracods, large decapods, and calycophoran siphonophores in both SC and CC; appendicularians and polychaetes in SC). Two tests for ecosystem shifts, a sequential algorithm and the cumulative sum of anomalies (CuSum) approach, failed to detect changes in 1976-1977 in total carbon biomass, displacement volume, or most individual major taxa, suggesting that aggregated biomass is an insensitive indicator of climate forcing. In contrast, both techniques revealed a cluster of step-like changes associated with the La Niña of 1999. The major El Niño’s in the past half century have consistently depressed total zooplankton biomass and biomass of many major taxa in both SC and CC, although such effects are transitory. Much, but not all, of the interannual variability in zooplankton is shared between the Southern and Central California sectors of the California Current System.
Keywords:Decadal change  Regime shifts  Zooplankton  Copepods  Euphausiids  Pelagic tunicates  Salps  Northeast Pacific  California Current
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号