首页 | 本学科首页   官方微博 | 高级检索  
     


Springtime coupling between chlorophyll a, sea ice and sea surface temperature in Disko Bay, West Greenland
Authors:M.P. Heide-Jø  rgensen,K.L. Laidre,M.L. Logsdon
Affiliation:a Greenland Institute of Natural Resources (GINR), c/o Danish Polar Center, Strandgade 100H, DK-1401, Copenhagen K, Denmark
b University of Washington, School of Oceanography, Box 357940, Seattle, WA 98195, USA
c National Environmental Research Institute, Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
d Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA 98105, USA
Abstract:
Alterations in sea ice and primary production are expected to have cascading influences on the food web in high Arctic marine ecosystems. This study spanned four years and examined the spring phytoplankton production bloom in Disko Bay, West Greenland (69°N, 53°W) (using chlorophyll a concentrations as a proxy) under contrasting sea ice conditions in 2001 and 2003 (heavy sea ice) and 2002 and 2004 (light sea ice). Satellite-based observations of chlorophyll a, sea ice and sea surface temperature were used together with in situ depth profiles of chlorophyll a fluorescence collected at 24 sampling stations along the south coast of Disko Island (5-30 km offshore) in May 2003 and 2004. Chlorophyll a and sea surface temperatures were also obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS: EOS-Terra and AQUA satellites) between March 2001 and July 2004. Daily SMMR/SSMI sea ice data were obtained in the same years. An empirical regional algorithm was developed to calibrate ratios of remotely sensed measurements of water leaving radiance with in situ chlorophyll a fluorescence. The optimal integration depth was 0-4 m, explaining between 70% and 91% of the variance. The spatial development of the phytoplankton bloom showed that the southwestern corner of the study area had the earliest and the largest spring phytoplankton bloom. The eastern part of Disko Bay, influenced by meltwater outflow from the glaciers, shows no signs of an early phytoplankton bloom and followed the general pattern of an accelerated bloom soon after the disappearance of sea ice. In all four years the coupling between phytoplankton and sea ice was bounded by average open water between 50% and 80%, likely due to the combined availability of light and stable open water. The daily incremental growth in both mean chlorophyll a density (chlorophyll a per volume water, μg l−1) and abundance (density of chlorophyll a extrapolated to ice free areas, tons) estimated by linear regression (chlorophyll a vs. day) between 1 April and 15 May was highest in 2002 and 2004 (light ice years) and lowest in 2001 and 2003 (heavy ice years). In years with late sea ice retreat the chlorophyll a attained only slightly lower densities than in years with early sea ice retreat. However, the abundance of chlorophyll a in light ice years was considerably larger than in heavy ice years, and there was an obvious effect of more open water for light-induced stimulation of primary production. This observation demonstrates the importance of estimating chlorophyll a abundance rather than density in sea ice covered areas. This study also presents the first regional calibration of MODIS chlorophyll a data for Arctic waters.
Keywords:Phytoplankton   MODIS   Regional algorithm   Chlorophyll a   Greenland   Disko Bay
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号