首页 | 本学科首页   官方微博 | 高级检索  
     

用Kriging方法对中国历史气温数据插值可行性讨论
引用本文:李伟,李庆祥,江志红. 用Kriging方法对中国历史气温数据插值可行性讨论[J]. 南京气象学院学报, 2007, 30(2): 246-252
作者姓名:李伟  李庆祥  江志红
作者单位:1. 南京信息工程大学,江苏省气象灾害重点实验室,江苏,南京,210044
2. 国家气象信息中心,北京,100081;中国气象局,气候变化重点实验室,北京,100081
基金项目:中国气象局气候变化专项基金 , 科技部基础性工作项目
摘    要:使用 Kriging 插值方法对已经过质量控制和均一化的1951年1月-2004年12月中国全部基本、基准站气温资料逐月进行空间插值.通过站点的实际序列与插值后格点序列进行比较,针对相关系数和线性趋势等多个量来检验 Kriging 方法对气候资料插值的效果.结果表明:插值前、后的气温空间分布、气温变化趋势都非常一致,从年际变化来看,插值序列与实际站点序列的相关性也非常高.对比分析还发现用距平序列的插值效果要明显优于原始气温序列插值,但不同的球面模型半径插值在站点稀疏地区的插值结果差别较大,需要先对气候要素进行空间代表性进行分析,以合适的球面半径进行插值.对于气候变化比较特殊的地区,如中国西南部分地区,插值序列很难反映更小尺度的气候变化规律.

关 键 词:Kriging方法  空间内插  相关  气温  Kriging Method  方法  中国  历史  气温  数据插值  Temperature Data  Feasibility  气候变化规律  小尺度  西南部  行插值  球面  代表  行空间  气候要素  差别  插值结果  地区  半径
文章编号:1000-2022(2007)02-0246-07
修稿时间:2005-12-122006-03-24

Discussion on Feasibility of Gridding the Historic Temperature Data in China with Kriging Method
LI Wei,LI Qing-xiang,JIANG Zhi-hong. Discussion on Feasibility of Gridding the Historic Temperature Data in China with Kriging Method[J]. Journal of Nanjing Institute of Meteorology, 2007, 30(2): 246-252
Authors:LI Wei  LI Qing-xiang  JIANG Zhi-hong
Affiliation:1. Jiangsu Key Laboratory of Meteorological Disater, NUIST, Nanjing 210044, China; 2. National Meteorological Information Centre, Beijing 100081, China; 3. Laboratory for Climate studies, CMA, Beijing 100081, China
Abstract:The Kriging method is used to conduct the spatial interpolation of surface air temperature dataset over China for each month from January 1951 to December 2004,and comparisons were made between interpolated and observed series. The results show that high correlations were detected between interpolated and original series, which proves that the interpolation of large scale historic climatic data is acceptable to some extent; and in interpolation, departure values in stead of origional values were recommended and 10 as the radius of the spherical model,which will improve the resultant series greatly, especially in station-sparse areas. While in some regions with particular local climate changes, it deserves more careful downscaling analysis and denser stations distribution.
Keywords:Kriging method   spatial interpolation   correlation   temperature
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号