摘 要: | 可解释的准确预测PM2.5浓度变化可以有助于人类规避暴露风险,对人类健康风险评估和政策实施具有重要意义。目前已有PM2.5浓度预测模型过多专注于提升模型预测精度,但忽略了模型的可解释性,造成模型可复用性和可信任度较差。鉴于此,本文提出了一种兼顾模型预测精度与模型可解释性的注意力时空常微分方程模型(Attentional SpatioTemporal Ordinary Differential Equation,ASTODE)用于PM2.5浓度预测任务。具体而言,本文将神经常微分方程集成至PM2.5浓度预测任务中,以提升预测模型的可解释性。此外,针对传统神经常微分方程难以挖掘PM2.5浓度数据中空间依赖关系的挑战,本文提出了一种新颖时空导数网络将传统神经常微分方程扩展到了时空常微分方程。针对传统神经常微分方程难以挖掘PM2.5浓度数据中长期依赖关系的挑战,本文设计了一种时空注意力机制去融合多个时间节点的隐藏状态。本文采用真实的PM2.5...
|