首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Clinker formation in basaltic and trachybasaltic lava flows
Authors:Sébastien Loock  Benjamin van Wyk de Vries  Jean-Marc Hénot
Institution:1. Laboratoire Magmas et Volcans (CNRS UMR 6524), Observatoire du Physique du Globe de Clermont, Université Blaise Pascal Clermont II, 5 rue Kessler, 63036, Clermont-Ferrand Cedex, France
Abstract:Clinker is a term used to describe massive or scoriaceous fragments commonly associated with ‘a‘ā lava flows. Clinker is generally considered to form by fragmentation of an upper vesiculated crust, due to an increase in apparent viscosity and/or to an increase in shear strain rate. Surface clinker is considered to be transported to the flow front and incorporated at the base by caterpillar motion. Clinker that we have observed on a variety of lava flows has very variable textures, which suggests several different mechanisms of formation. In order to study clinker formation, we examined several lava flows from the Chaîne des Puys Central France, where good sections, surface morphology and surface textures are widespread and clearly visible. We observed basal and surface ‘a‘ā clinker that has fragmentation textures similar to those observed in ash formed in eruptions under dry conditions. In two pāhoehoe flows we have observed basal clinker that formed in-situ. Two other flows display clinker features identical to those commonly observed in phreatomagmatic ash, such as adhering particles, blocky shapes, spherical glass and attached microphenocrysts. Another pāhoehoe flow has a flakey, angular basal breccia, with microfaulted and abraded clasts. These were probably formed at a cooled lava base by large amounts of simple shear and consequent intra-lava brittle faulting. Using these observations we propose three different ways of fragmentation. (1) Clinker can form at the surface and eventually produce roll-over basal breccia. (2) Water/lava interactions can form basal clinker by phreatomagmatic fragmentation. Water/lava ratio variations may produce different clinker structures, in a manner similar to observed textural changes in phreatomagmatic eruptions. (3) Clinker can be formed by brittle brecciation during basal simple shear. The different clinker can provide information about the mechanisms and environmental conditions during lava flow emplacement.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号