On the occurrence of convective motions in the upper photosphere |
| |
Authors: | C. De Jager L. Neven |
| |
Affiliation: | (1) Astronomical Institute, Utrecht, The Netherlands;(2) Royal Belgian Observatory, Uccle-Brussels, Belgium |
| |
Abstract: | We have examined whether the motion field in the photosphere in the range of optical depths 0.25< 0< 0.6 is dominated by thermal convection or by vibrations. The observed asymmetries of infrared Fraunhofer lines indicate the presence of motions, and the fact that the asymmetry is zero for lines of low excitation and increases with the excitation potential shows that these motions are chiefly convective in this part of the photosphere: upward moving elements appear to be hotter than downward moving ones.Assuming furthermore that the photosphere can be described by a three-column model, with temperature differences as given by Edmonds (1967), we find that in the range of optical depths given above, where T seems to vary between 80 and 160 °K, average convective velocities of 2.3 to 3.2 km/sec should occur. This result is in numerical agreement with (a) a previous one by the present authors (1967) derived from the variation of line asymmetry with depth in lines of one multiplet, (b) a finding by Lambert and Mallia (1968) deduced from absolute wavelength measurements of Fraunhofer lines, and (c) a recent result of Beckers (1968) found from a comparison of two granulation pictures obtained simultaneously with a narrow-band filter centred on the two wings of a faint line. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|