首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of hillslope-derived sediment supply on drainage basin development in small watersheds at the northern border of the central Alps of Switzerland
Authors:Fritz Schlunegger  
Abstract:This paper explores the effects of hillslope mobility on the evolution of a 10-km2 drainage basin located at the northern border of the Swiss Alps. It uses geomorphologic maps and the results of numerical models that are based on the shear stress formulation for fluvial erosion and linear diffusion for hillslope processes. The geomorphic data suggest the presence of landscapes with specific cross-sectional geometries reflecting variations in the relationships between processes in channels and on hillslopes. In the headwaters, the landscape displays parabolic cross-sectional geometries indicating that mass delivered to channels by hillslope processes is efficiently removed. In the trunk stream portion, the landscape is (i) V-shaped if the downslope flux of mass is balanced by erosion in channels (i.e. if mass delivered to channels by hillslope processes is efficiently removed) and (ii) U-shaped if in-channel accumulation of hillslope-derived material occurs. This latter situation indicates a non-balanced mass flux between processes in channels and on hillslopes.Information about the spatial pattern of the postglacial depth of erosion allows comparative estimates to be made about the erosional efficiency for the various landscapes that were mapped in the study area. The data suggest that the erosional potential and sediment discharge are reduced for the situation of a non-balanced mass flux between processes in channels and on hillslopes. These findings are also supported by the numerical model. Indeed, the model results show that high hillslope mobility tends to reduce the hillslope relief and to inhibit dissection and formation of channels. In contrast, stable hillslopes tend to promote fluvial incision, and the hillslope relief increases. The model results also show that very low erosional resistance of bedrock promotes backward erosion and steepening of channel profiles in headwaters. Beyond that, the model reveals that sediment discharge generally increases with decreasing erosional resistance of bedrock, but that this increase decays exponentially with increasing magnitudes of fluvial and hillslope mobilities. Very high hillslope diffusivities even tend to reduce the erosional potential of the whole watershed. It appears that besides rates of base-level lowering, factors limiting sediment discharge might be the nonlinear relationships between processes in channels and on hillslopes.
Keywords:Geomorphology  Sediment flux  Surface process model  Hillslope mobility  Swiss Alps
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号