a School of Planning, University of Cincinnati, Cincinnati, OH 45221-0016, USA
b Department of Geography, Georgia State University, Atlanta, GA 30303, USA
Abstract:
Automated generation of drainage networks has become increasingly popular with powerful analytical functions in geographic information systems (GIS) and with the increased availability of digital elevation models (DEMs). This paper compares drainage networks derived from DEMs at two scales, 1:250 000 (250K) and 1:24 000 (24K), using various drainage parameters common in hydrology and geomorphology. The comparison of parameters derived from the 250K DEMs with those from the 24K DEMs in 20 basins ranging from 150 to 1000 km2 in West Virginia shows that the goodness-of-fit between parameter estimates based on the DEMs varies. Results clearly show that superior estimations are produced from the 24K DEMs. Better estimates can be obtained from the 250K DEMs for stream length and frequency parameters than for gradient parameters. However, the estimation of the mean gradient parameters based on the 250K DEMs seems to improve with increasing terrain complexity. Finally, basin size does not strongly affect the accuracy of parameter estimates based on the 250K DEMs.