首页 | 本学科首页   官方微博 | 高级检索  
     

电渗前后淤泥质土的物理力学性质对比研究
引用本文:田震,王宝军,卢毅,李飞,马楠诘. 电渗前后淤泥质土的物理力学性质对比研究[J]. 高校地质学报, 2018, 24(3): 460
作者姓名:田震  王宝军  卢毅  李飞  马楠诘
摘    要:
为深入研究电渗排水对土体工程性质的影响,采用铁丝为电极,在模型箱内对南京市某河道淤泥质土进行电渗排水模拟试验。电渗前后土的物理力学性质对比分析表明:电渗后土体的液、塑限与塑性指数均降低;电渗前后土体在相同含水量和干密度情况下进行直接剪切试验,发现电渗后土体的凝聚力和内摩擦角均降低,即电渗后土体在特定情况下出现了强度衰减的现象。论文基于土中阳离子流失机理对土体在特定情况下的强度衰减现象进行了微观解释。另外,利用提出的新的电渗机理从微观角度解释了电渗过程中土体开裂现象,阳极因快速失水,最早出现裂隙,但裂隙延展范围较小;阴极含水量始终高于阳极,且失水速度较慢,裂隙延展范围较大。值得一提的是,在以往的研究中并未关注到电渗加固过程中土中阳离子流失对电渗后土体性质的影响。

关 键 词:淤泥质土  电渗  对比研究  机理  强度衰减  土体开裂  

Comparative Experiment on Physical and Mechanical Properties of Muddy Soil before and after Electro-osmosis
TIAN Zhen,WANG Baojun,LU Yi,LI Fei,MA Nanji. Comparative Experiment on Physical and Mechanical Properties of Muddy Soil before and after Electro-osmosis[J]. Geological Journal of China Universities, 2018, 24(3): 460
Authors:TIAN Zhen  WANG Baojun  LU Yi  LI Fei  MA Nanji
Abstract:
In order to study the effect of electro-osmotic drainage on soil properties, electro-osmotic consolidation of the muddy soil ina river channel in Nanjing was studied in laboratory by using wire electrode in a model. Before and after electro-osmosis, the muddysoil was analyzed and compared through physical and mechanical properties. The results demonstrated that liquid limit, plastic limitand the plastic limit index decreased after electro-osmosis. Before and after the electro-osmosis, the soil was used for direct shear testunder the same water content and dry density. It’s found that the cohesion and internal friction angle of the soil reduce under specificconditions, that is, electro-osmosis leads to strength attenuation. In this paper, the mechanism of soil strength attenuation is explainedbased on cation loss in soil during electro-osmosis. In addition, this paper proposed a new electro-osmotic mechanism to explain thephenomenon of soil cracking in the process of electro-osmosis from the microscopic point of view. The anode had the earliest fracturedue to rapid dehydration, but the extension range of fracture was smaller. The water content of cathode was always higher than that ofthe anode and cathode had the slower water loss. So, the cathode had a large range of crack extension. It is worth mentioning that,theinfluence of the cation loss on the properties of the soil has not been noticed in the past study
Keywords:muddy soil  electro-osmosis  comparative study  mechanism  strength attenuation  soil cracking
本文献已被 CNKI 等数据库收录!
点击此处可从《高校地质学报》浏览原始摘要信息
点击此处可从《高校地质学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号