首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of oxygen fugacity on mineral compositions in peralkaline melts: The Katzenbuckel volcano, Southwest Germany
Authors:Ute Mann  Michael Marks  Gregor Markl  
Institution:

aInstitut für Geowissenschaften, AB Mineralogie und Geodynamik, Eberhard-Karls-Universität, Wilhelmstrasse 56, D-72074 Tübingen, Germany

Abstract:The igneous rocks of the Katzenbuckel, Southwest Germany, represent a unique and unusual alkaline to peralkaline association within the European Volcanic Province. The magmatic activity can be subdivided into two main phases. Phase I comprises the main rock bodies of phonolite and nepheline syenite, which were later intruded by different peralkaline dyke rocks (tinguaites and alkali feldspar syenite dykes) of phase II. The dyke assemblage was accompanied by magnetite and apatite veins and was followed by a late-stage pneumatolytic activity causing autometasomatic alterations.

As is typical for alkaline to peralkaline igneous rocks, early mafic minerals of phase I rocks comprise olivine, augite and Fe–Ti oxides, which are substituted in the course of fractionation by Na-amphibole and Na-pyroxene. For the early magmatic stage, calculated temperatures range between 880 and 780 °C with low silica activities (0.4 to 0.6) but high relative oxygen fugacities between 0.5 and 1.9 log units above the FMQ buffer. Even higher oxygen fugacities (above the HM buffer) are indicated for the autometasomatic alteration, which occurred at temperatures between 585 and 780 °C and resulted in the formation of pseudobrookite and hematite.

The unusually high oxygen fugacities (even during the early magmatic stage) are recorded by the major element compositions of the mafic minerals (forsterite content in olivine between 68 and 78 mol%, up to 6.2 wt.% ZrO2 and 8.5 wt.% TiO2 in clinopyroxene), the unusual mineral assemblages (pseudobrookite, freudenbergite) and by the enrichment of Fe3+ in the felsic minerals (up to 2.8 wt.% Fe2O3 in alkali feldspar and up to 2.6 wt.% Fe2O3 in nepheline). These observations point to a metasomatically enriched and highly oxidized lithospheric mantle as a major source for the Katzenbuckel melts.

Keywords:Peralkaline  Oxygen fugacity  Ti–Zr-rich aegirine  Pseudobrookite  Metasomatism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号