Diagenesis of the Gully Oolite (Lower Carboniferous), South Wales |
| |
Authors: | Alison Searl |
| |
Abstract: | Deposition of the Gully Oolite was locally interrupted by emergence and a regionally extensive palaeosol is present at the top of the unit. Early diagenetic phases include isopachous, fibrous submarine cements, nonluminescent vadose cements, and mixing zone dolomite. Subsequent nonferroan phreatic cements are non- to dully luminescent and in restricted vertical intervals predate significant compaction. More usually, however, phreatic cements postdate extensive overpacking of allochems. Ooid isotopic composition (δ18O=-7·80° to -3·10° and δ13C = -2·38° to +3·28°) is similar to that of associated phreatic cements and the data suggest that the bulk of ooid stabilization and cementation occurred within meteoric groundwaters. The extensive allochem overpacking appears to have occurred during the first few tens of metres of burial and intergranular macroporosity was eliminated prior to deep burial. Fracturing of the Gully Oolite during the Hercynian Orogeny and subsequent post-orogenic uplift led to localized dolomitization, several generations of calcite veins, and the restricted occurrence of 18O depleted cements in inter- and intragranular microporosity. Some of the veins clearly relate to Triassic exhumation of the Carboniferous Limestone, but others may be related to post-Mesozoic uplift and erosion of South Wales. Fracture-associated dolomitization may have occurred within a large-scale post-orogenic groundwater system, with Mg2+ being supplied through the release of deeply buried diagenetic brines. |
| |
Keywords: | Carbonate diagenesis Dinantian limestones Oolite Stable isotopes South Wales Chemical compaction |
|
|