首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial reorganization of SST anomalies by stationary atmospheric waves
Institution:1. Department of Civil Engineering, Tsinghua University, 100084 Beijing, China;2. Institute of Structural Engineering, Zhejiang University, 310058 Hangzhou, China;3. Institute of Construction Materials, University of Stuttgart, 70560 Stuttgart, Germany;4. Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
Abstract:The dynamics of sea surface temperature (SST) anomalies that force stationary atmospheric waves, which in turn, feed back on the SST field is addressed. The phenomena is isolated by analyzing the dynamics of a slab ocean that is thermally coupled to an atmospheric model. Particular emphasis is put on identifying SST structures that are weakly damped by the joint effect of air–sea heat transfer and atmospheric wave dynamics.A frame work is presented that singles out long-lived SST features in a slab ocean coupled to an arbitrary linear atmospheric model. It is demonstrated that an SST anomaly eventually disintegrates into a number of propagating wave packets. The wave packets are confined in a Gaussian envelope, and each packet is tied to a stationary wave of a particular wavelength. These structures are a manifestation of coupled SST-atmosphere mode, for which the atmosphere and the ocean nearly are in thermal equilibrium. However, a small disequilibrium causes the wave packet to propagate and to broaden in an apparent diffusive manner.Central ideas pertaining to the mid-latitude SST dynamics are illustrated by analyzing the thermal feedback between a two-level atmospheric model (on a β-plane) and a dynamically passive slab ocean. The relevance of the present idealized coupled-modes to the SST variability in the mid-latitudes and in atmospheric GCMs coupled to slab oceans is discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号