首页 | 本学科首页   官方微博 | 高级检索  
     

岩质边坡楔形体稳定模糊随机可靠性研究
引用本文:王宇,魏献忠,黎明,余宏明. 岩质边坡楔形体稳定模糊随机可靠性研究[J]. 地质科技情报, 2012, 0(4): 111-116
作者姓名:王宇  魏献忠  黎明  余宏明
作者单位:中国地质大学工程学院;中国科学院地质与地球物理研究所;中国科学院研究生院;黄淮学院
摘    要:
在统计矩点估计法和模糊随机理论的基础上,提出了楔形体模糊随机可靠性分析改进的模糊点估计法,将楔形体稳定极限状态方程由模糊随机集向普通随机集转化,首先采用Bayes推断方法求解小样本条件下结构面力学参数的概率分布函数,用正态模糊数对随机变量进行模糊随机化处理,然后利用模糊点估计法求解楔形体的可靠度指标。算例分析结果表明,该法使用简便,结果可靠,更能客观地反映楔形体的真实状态,从而为工程决策提供依据。

关 键 词:楔形体  Bayes方法  模糊点估计法  正态模糊数  可靠性分析

Wedge Analysis for Rock Mass Slope Base on Fuzzy Random Theroy
WANG Yu,WEI Xian-zhong,LI Ming,YU Hong-ming. Wedge Analysis for Rock Mass Slope Base on Fuzzy Random Theroy[J]. Geological Science and Technology Information, 2012, 0(4): 111-116
Authors:WANG Yu  WEI Xian-zhong  LI Ming  YU Hong-ming
Affiliation:1(1.Faculty of Engineering,China University of Geosciences,Wuhan 430074,China; 2.Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China; 3.Graduate University,Chinese Academy of Sciences,Beijing 100049,China; 4.Huanghuai University,Zhumadian Henan 463000,China)
Abstract:
The fuzzy point estimate method of the wedge reliability evaluation was presented in the base of the statistical moment point estimate method and fuzzy cut sets theory.The wedge stability limit state equation is transformed from fuzzy random set to normal random set.The point estimation method is used to solve the wedge reliability indexes.Firstly,the Bayes method is used to solve the probability distribution function under small sample conditions of structure surfaces mechanical parameters.Normal fuzzy number is used to make the random variable fuzzy and the point estimation method is used to solve the wedge reliability indexes.Analysis of the results showed that the method is simple,reliable,and can more objectively reflect the reality of wedge body so as to provide the basis for the engineering decision.
Keywords:wedge  Bayes method  fuzzy point estimate method  normal fuzzy number  reliability analysis
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号