Mechanisms for transition in eruptive style at a monogenetic scoria cone revealed by microtextural analyses (Lathrop Wells volcano, Nevada, U.S.A.) |
| |
Authors: | Kimberly Genareau Greg A. Valentine Gordon Moore Richard L. Hervig |
| |
Affiliation: | (1) School of Earth & Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287, USA;(2) Department of Geology, University at Buffalo, 411 Cooke Hall, Buffalo, NY 14260, USA;(3) Department of Chemistry & Biochemistry, Arizona State University, P.O. Box 871604, Tempe, AZ 85287, USA |
| |
Abstract: | Explosive activity at Lathrop Wells volcano, Nevada, U.S.A. originated with weak Strombolian (WS) eruptions along a short fissure, and transitioned to violent Strombolian (VS) activity from a central vent, with lava effusion during both stages. The cause for this transition is unknown; it does not reflect a compositional change, as evidenced by the consistent bulk geochemistry of all the eruptive products. However, comparison of agglutinate samples from the early, WS events with samples of scoria from the later, VS events reveal differences in the abundance and morphology of groundmass phases and variable textures in the rims of olivine phenocrysts. Scanning electron microscope (SEM) examination of thin sections from the WS samples show euhedral magnetite microlites in the groundmass glass and olivine phenocrysts show symplectite lamellae in their rims. Secondary ion mass spectrometry (SIMS) depth profiles of these symplectites indicate they are diffusion-controlled. The calculated DFe-Mg allows an estimation of the oxygen fugacity (fO2) and indicates an increased fO2 during eruption of the WS products. Conversely, the VS samples show virtually no magnetite microlites in the groundmass glass, a lack of symplectites in the olivines, and a lower calculated fO2. These microtextural features suggest that the Lathrop Wells trachybasalt experienced increased oxidation during WS activity. As magma ascended through the original fissure, exsolved bubbles were concentrated in the wider part(s) (the protoconduit) and this bubble flux drove convective circulation that oxidized the magma through exposure to atmosphere and recirculation. This oxidation resulted in groundmass crystallization of magnetite within the melt and formation of symplectites within the olivine phenocrysts. Bubble-driven convection mixed magma vertically within the protoconduit, keeping it fluid and driving Strombolian bursts, while microlite crystallization in narrower parts of the fissure helped to focus flow. Development of a central conduit increased the magma ascent velocity (due to a greater product volume in the later eruptive stages) and caused the shift in eruption intensity. Consequently, variations in microtextures of the Lathrop Wells products reveal how a combination of fluid dynamic and crystallization processes in the ascending magma resulted in different styles of activity while the products maintained a consistent bulk composition. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|