Temporal replication of the national land cover database using active machine learning |
| |
Authors: | Galen J. Maclaurin |
| |
Affiliation: | Department of Geography, University of Colorado, UCB 260, Boulder, CO 80309, USA |
| |
Abstract: | Regional and national level land cover datasets, such as the National Land Cover Database (NLCD) in the United States, have become an important resource in physical and social science research. Updates to the NLCD have been conducted every 5 years since 2001; however, the procedure for producing a new release is labor-intensive and time-consuming, taking 3 or 4 years to complete. Furthermore, in most countries very few, if any, such releases exist, and thus there is high demand for efficient production of land cover data at different points in time. In this paper, an active machine learning framework for temporal updating (or backcasting) of land cover data is proposed and tested for three study sites covered by the NLCD. The approach employs a maximum entropy classifier to extract information from one Landsat image using the NLCD, and then replicate the classification on a Landsat image for the same geographic extent from a different point in time to create land cover data of similar quality. Results show that this framework can effectively replicate the land cover database in the temporal domain with similar levels of overall and within class agreement when compared against high resolution reference land cover datasets. These results demonstrate that the land cover information encapsulated in the NLCD can effectively be extracted using solely Landsat imagery for replication purposes. The algorithm is fully automated and scalable for applications at landscape and regional scales for multiple points in time. |
| |
Keywords: | active machine learning maximum entropy temporal replication National Land Cover Database (NLCD) information extraction |
|
|