首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
Authors:Moses Azong Cho   Andrew Skidmore   Fabio Corsi   Sipke E. van Wieren  Istiak Sobhan  
Affiliation:aInternational Institute for Geo-information Science and Earth Observation (ITC), Hengelosestraat 99, P.O. Box 6, Enschede 7500 AA, Enschede, The Netherlands;bResource Ecology Group, Wageningen University, Bornsesteeg 69, 6708 PD Wageningen, The Netherlands
Abstract:The main objective was to determine whether partial least squares (PLS) regression improves grass/herb biomass estimation when compared with hyperspectral indices, that is normalised difference vegetation index (NDVI) and red-edge position (REP). To achieve this objective, fresh green grass/herb biomass and airborne images (HyMap) were collected in the Majella National Park, Italy in the summer of 2005. The predictive performances of hyperspectral indices and PLS regression models were then determined and compared using calibration (n = 30) and test (n = 12) data sets. The regression model derived from NDVI computed from bands at 740 and 771 nm produced a lower standard error of prediction (SEP = 264 g m−2) on the test data compared with the standard NDVI involving bands at 665 and 801 nm (SEP = 331 g m−2), but comparable results with REPs determined by various methods (SEP = 261 to 295 g m−2). PLS regression models based on original, derivative and continuum-removed spectra produced lower prediction errors (SEP = 149 to 256 g m−2) compared with NDVI and REP models. The lowest prediction error (SEP = 149 g m−2, 19% of mean) was obtained with PLS regression involving continuum-removed bands. In conclusion, PLS regression based on airborne hyperspectral imagery provides a better alternative to univariate regression involving hyperspectral indices for grass/herb biomass estimation in the Majella National Park.
Keywords:Green grass/herb biomass   NDVI   Red-edge position   HyMap   Partial least squares regression   Continuum-removal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号