首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群优化算法在遥感影像增强中的应用
引用本文:李林宜,李德仁. 粒子群优化算法在遥感影像增强中的应用[J]. 测绘学院学报, 2010, 0(2)
作者姓名:李林宜  李德仁
作者单位:武汉大学遥感信息工程学院;武汉大学测绘遥感信息工程国家重点实验室;
基金项目:国家自然科学基金资助项目(40523005);;武汉大学自主科研资助项目(4082007)
摘    要:
遥感影像的复杂性给影像增强处理带来了困难。非完全Beta函数增强方法具有理想的增强效果,但是,其参数的合理选取是算法的关键与难点。粒子群优化算法(PSO)是基于鸟群群体智能的新型进化计算技术,具有自适应、自组织等智能特性,具有强大的寻找最优解的能力。这里将PSO用于Beta函数参数的自适应选取,实现了基于PSO的非完全Beta函数增强方法,并通过航空和卫星遥感影像的增强实验,验证了该方法的有效性。

关 键 词:粒子群优化算法  遥感  影像增强  自适应  参数选取  

Research on Particle Swarm Optimization in Remote Sensing Image Enhancement
LI Lin-yi,LI De-ren. Research on Particle Swarm Optimization in Remote Sensing Image Enhancement[J]. Journal of Institute of Surveying and Mapping, 2010, 0(2)
Authors:LI Lin-yi  LI De-ren
Affiliation:1.School of Remote Sensing and Information Engineering;Wuhan University;Wuhan 430079;China;2.State Key Laboratory of Information Engineering in Surveying;Mapping and Remote Sensing;China
Abstract:
Due to the complexity of remote sensing images,remote sensing image enhancement becomes a difficult task.Although the incomplete Beta function enhancement method has good enhancement effects,Beta function parameter selection is the key and difficult problem.Particle swarm optimization(PSO) is a new evolutionary computing technique that is based on swarm intelligence of bird flocks.Because of its intelligent properties such as adaptation and self-organizing,PSO has the strong ability to search for the optima...
Keywords:particle swarm optimization  remote sensing  image enhancement  adaptive  parameter selection  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号