首页 | 本学科首页   官方微博 | 高级检索  
     

大地电磁自适应正则化反演算法
引用本文:陈小斌, 赵国泽, 汤吉, 詹艳, 王继军. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4): 937-946,
作者姓名:陈小斌  赵国泽  汤吉  詹艳  王继军
作者单位:1 北京大学地球物理学系,北京100871 2 中国地震局地质研究所,北京100029
基金项目:国家自然科学基金项目(40274017).
摘    要:针对大地电磁正则化反演中正则化因子的选取困难问题提出了自适应正则化反演算法(Adaptive Regularized Inversion Algorithm, ARIA). 在该算法中, ①提出了一种新的数据方差处理方法:数据方差规范化,使得数据方差的大小只对数据的拟合发生影响,不对数据目标函数和模型约束目标函数的权重产生影响,从而减少了正则化因子取值的影响因素;②提出了粗糙度核矩阵的概念,并给出了由基本结构插值基函数计算粗糙度核矩阵的公式,使得模型目标函数的构建更为简便、直接;③根据数据目标函数、模型约束目标函数和正则化因子之间的关系,提出了两种正则化因子自适应调节方法. 本文详细阐述了最平缓模型约束下的大地电磁一维连续介质反演的ARIA实现,以几个算例的分析比较来说明ARIA的有效性.

关 键 词:自适应正则化反演算法  目标函数  粗糙度核矩阵  大地电磁  
文章编号:0001-5733(2005)04-0937-10
收稿时间:2004-04-29
修稿时间:2005-03-28

An adaptive regularized inversion algorithm for magnetotelluric data
CHEN Xiao_Bin, ZHAO Guo_Ze, TANG Ji, ZHAN Yan, WANG Ji_Jun. An adaptive regularized inversion algorithm for magnetotelluric data[J]. Chinese Journal of Geophysics (in Chinese), 2005, 48(4): 937-946,
Authors:CHEN Xiao-bin  ZHAO Guo-Ze  TANG Ji  Zhan Yan  WANG Ji-jun
Affiliation:1 Department of Geophysics, Peking University, Beijing 100871, China 2 Institute of Geology, Earthquake Adminstration, Beijing 100029, China
Abstract:In this paper, a new inversion method, Adaptive Regularized Inversion Algorithm (ARIA), is presented to overcome the difficulty in determination of regularized factors for magnetotelluric (MT) inversion. In ARIA, first a new data variance disposing method, data variance normalization method, is put forward. This method uses a new way to calculate the influence matrix of data variance in inversion. Thus, the data variance only influences data fitting, and has no influence on the weight between the data object function and the model constraint object function. So the influence factors in determination of the regularized factor are reduced. Second, the definition of roughness kernel matrix is presented in the course of constructing the model constraint object function, and a concise equation of it is derived. Thus the construction of the model object function becomes very simple and direct. Third two adaptive methods of regularized factors are put forward based on the relations of data object function, model constraint object function, and regularized factor. ARIA is used to solve the one_dimensional inversion by MT data by the constraint of the flattest model. Several examples are given to illustrate the effectiveness of ARIA.
Keywords:Adaptive Regularized Inversion Algorithm   Object function   Roughness kernel matrix   Magnetotellurics   Continuous medium
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号