首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study
Authors:Juyoung Ha  Alexandre Gélabert  Alfred M Spormann
Institution:a Surface & Aqueous Geochemistry Group, Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA
b Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
c Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, MS 69, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
Abstract:The effect of cell wall-associated extracellular polymeric substances (EPS) of the Gram-negative bacterium Shewanella oneidensis strain MR-1 on proton, Zn(II), and Pb(II) adsorption was investigated using a combination of titration/batch uptake studies, surface complexation modeling, attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy, and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. Both unmodified (wild-type (WT) strain) and genetically modified cells with inhibited production of EPS (ΔEPS strain) were used. Three major types of functional groups (carboxyl, phosphoryl, and amide groups) were identified in both strains using ATR-FITR spectroscopy. Potentiometric titration data were fit using a constant capacitance model (FITEQL) that included these three functional groups. The fit results indicate less interaction of Zn(II) and Pb(II) with carboxyl and amide groups and a greater interaction with phosphoryl groups in the ΔEPS strain than in the WT strain. Results from Zn(II) and Pb(II) batch adsorption studies and surface complexation modeling, assuming carboxyl and phosphoryl functional groups, also indicate significantly lower Zn(II) and Pb(II) uptake and binding affinities for the ΔEPS strain. Results from Zn K-edge EXAFS spectroscopy show that Zn(II) bonds to phosphoryl and carboxyl ligands in both strains. Based on batch uptake and modeling results and EXAFS spectral analysis, we conclude that the greater amount of EPS in the WT strain enhances Zn(II) and Pb(II) uptake and hinders diffusion of Zn(II) to the cell walls relative to the ΔEPS strain.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号