首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical Simulations of a Florida Sea Breeze and Its Interactions with Associated Convection: Effects of Geophysical Representation and Model Resolution
Authors:Nessa HOCK  Feimin ZHANG  Zhaoxia PU
Abstract:The Florida peninsula in the USA has a frequent occurrence of sea breeze (SB) thunderstorms. In this study, the numerical simulation of a Florida SB and its associated convective initiation (CI) is simulated using the mesoscale community Weather Research and Forecasting (WRF) model in one-way nested domains at different horizontal resolutions. Results are compared with observations to examine the accuracy of model-simulated SB convection and factors that influence SB CI within the simulation. It is found that the WRF model can realistically reproduce the observed SB CI. Differences are found in the timing, location, and intensity of the convective cells at different domains with various spatial resolutions. With increasing spatial resolution, the simulation improvements are manifested mainly in the timing of CI and the orientation of the convection after the sea breeze front (SBF) merger into the squall line over the peninsula. Diagnoses indicate that accurate representation of geophysical variables (e.g., coastline and bay shape, small lakes measuring 10–30 km2), better resolved by the high resolution, play a significant role in improving the simulations. The geophysical variables, together with the high resolution, impact the location and timing of SB CI due to changes in low-level atmospheric convergence and surface sensible heating. More importantly, they enable Florida lakes (30 km2 and larger) to produce noticeable lake breezes (LBs) that collide with the SBFs to produce CI. Furthermore, they also help the model reproduce a stronger convective squall line caused by merging SBs, leading to more accurate locations of postfrontal convective systems.
Keywords:sea breeze  convective initiation  lake breeze  numerical simulation
本文献已被 维普 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号